Handicap distance antimagic graphs and incomplete tournaments
نویسنده
چکیده
Let G = (V,E) be a graph of order n. A bijection f : V → {1, 2, . . . , n} is called a distance magic labeling of G if there exists a positive integer μ such that ∑ u∈N(v) f(u) = μ for all v ∈ V, where N(v) is the open neighborhood of v. The constant μ is called the magic constant of the labeling f. Any graph which admits a distance magic labeling is called a distance magic graph. The bijection f : V → {1, 2, . . . , n} is called a d-distance antimagic labeling of G if for V = {v1, v2, . . . , vn} the sums ∑ u∈N(vi) f(u) form an arithmetic progression with difference d. We introduce a generalization of the well-known notion of magic rectangles called magic rectangle sets and use it to find a class of graphs with properties derived from the distance magic graphs. Then we use the graphs to construct a special kind of incomplete round robin tournaments, called handicap tournaments.
منابع مشابه
A NOTE ON INCOMPLETE REGULAR TOURNAMENTS WITH HANDICAP TWO OF ORDER n ≡ 8 (mod 16)
A d-handicap distance antimagic labeling of a graph G = (V, E) with n vertices is a bijection f : V → {1, 2, . . . , n} with the property that f(xi) = i and the sequence of weights w(x1), w(x2), . . . , w(xn) (where w(xi) = ∑ xixj ∈E f(xj)) forms an increasing arithmetic progression with common difference d. A graph G is a d-handicap distance antimagic graph if it allows a d-handicap distance a...
متن کاملRegular handicap tournaments of high degree
A handicap distance antimagic labeling of a graph G = (V,E) with n vertices is a bijection f : V → {1, 2, . . . , n} with the property that f(xi) = i and the sequence of the weights w(x1), w(x2), . . . , w(xn) (where w(xi) = ∑ xj∈N(xi) f(xj)) forms an increasing arithmetic progression with difference one. A graph G is a handicap distance antimagic graph if it allows a handicap distance antimagi...
متن کاملConstructions of antimagic labelings for some families of regular graphs
In this paper we construct antimagic labelings of the regular complete multipartite graphs and we also extend the construction to some families of regular graphs.
متن کاملOn (a, d)-distance antimagic graphs
Let G = (V,E) be a graph of order n. Let f : V → {1, 2, . . . , n} be a bijection. For any vertex v ∈ V , the neighbor sum ∑u∈N(v) f(u) is called the weight of the vertex v and is denoted by w(v). If w(v) = k, (a constant) for all v ∈ V , then f is called a distance magic labeling with magic constant k. If the set of vertex weights forms an arithmetic progression {a, a+ d, a+2d, . . . , a+ (n− ...
متن کاملGroup distance magic and antimagic graphs
Given a graph G with n vertices and an Abelian group A of order n, an A-distance antimagic labelling of G is a bijection from V (G) to A such that the vertices of G have pairwise distinct weights, where the weight of a vertex is the sum (under the operation of A) of the labels assigned to its neighbours. An A-distance magic labelling of G is a bijection from V (G) to A such that the weights of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013